Global Solutions to Nonlinear Two‐Phase Free Boundary Problems
نویسندگان
چکیده
منابع مشابه
Solutions of Nonlinear Singular Boundary Value Problems
We study the existence of solutions to a class of problems u + f(t, u) = 0, u(0) = u(1) = 0, where f(t, ·) is allowed to be singular at t = 0, t = 1.
متن کاملPositive Solutions To Nonlinear Semipositone Boundary Value Problems
In this paper, we investigate the following third-order three-point semipositone boundary value problems: ( ) ( , ) 0, (0,1); (0) ( ) (1) 0, u t f t u t
متن کاملExact Boundary Behavior of Solutions to Singular Nonlinear Dirichlet Problems
In this article we analyze the exact boundary behavior of solutions to the singular nonlinear Dirichlet problem −∆u = b(x)g(u) + λa(x)f(u), u > 0, x ∈ Ω, u|∂Ω = 0, where Ω is a bounded domain with smooth boundary in RN , λ > 0, g ∈ C1((0,∞), (0,∞)), lims→0+ g(s) = ∞, b, a ∈ Cα loc(Ω), are positive, but may vanish or be singular on the boundary, and f ∈ C([0,∞), [0,∞)).
متن کاملBoundary Regularity of Weak Solutions to Nonlinear Elliptic Obstacle Problems
for all v∈ ={v∈W 0 (Ω), v≥ψ a.e. in Ω}. Here Ω is a bounded domain in RN (N≥2) with Lipschitz boundary, 2≤ p ≤N . A(x,ξ) :Ω×RN → RN satisfies the following conditions: (i) A is a vector valued function, the mapping x → A(x,ξ) is measurable for all ξ ∈ RN , ξ → A(x,ξ) is continuous for a.e. x ∈Ω; (ii) the homogeneity condition: A(x, tξ)= t|t|p−2A(x,ξ), t ∈ R, t = 0; (iii) the monotone inequality...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications on Pure and Applied Mathematics
سال: 2019
ISSN: 0010-3640,1097-0312
DOI: 10.1002/cpa.21811